

SAO NOTE 23

ADA 012171

ESTABLISHMENT OF BUFFER ZONE FOR

BULK STORAGE OF COMMON CHEMICAL COMPOUND

THOMAS N. MAZZA

NORMAN H. TRIER

MAY 1975

US ARMY ARMAMENT COMMAND

SYSTEMS ANALYSIS OFFICE ROCK ISLAND, ILLINOIS 61201

Approved for public release; distribution unlimited.


EXPLOSIVES SAFETY

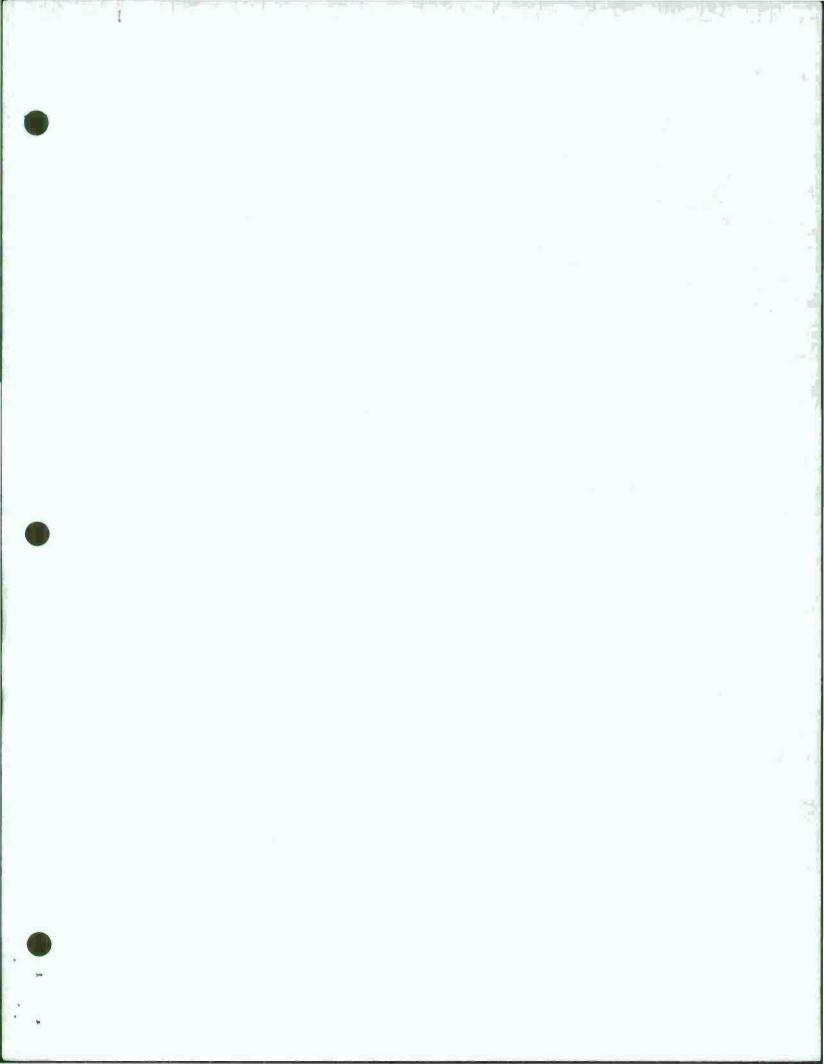
Encl

SECURITY CLASSIFICATION OF THIS PAGE (When Deta	Entered)	· · · · · · · · · ·
REPORT DOCUMENTATION		READ INSTRUCTIONS
1. REPORT NUMBER		BEFORE COMPLETING FO 3. RECIPIENT'S CATALOG NUMBER
SAO NOTE 23		
4. TITLE (and Sublitie)		5. TYPE OF REPORT & PERIOD CO
ESTABLISHMENT OF BUFFER ZONES FOR COMMON CHEMICAL COMPOUNDS	BULK STORAGE OF	Technical Note
COMMON CHEMICAL COMPOUNDS		6. PERFORMING ORG. REPORT NUN
		. FERFORMING ONG. REPORT NOR
7. AUTHOR(#)		8. CONTRACT OR GRANT NUMBER
Thomas N. Mazza	ň.	•
Norman H. Trier		
	\$	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, AREA & WORK UNIT NUMBERS
US Army Armament Command		
Systems Analysis Office		
Rock Island, IL 61201	· · · · · · · · · · · · · · · · · · ·	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
US Army Armament Command Systems Analysis Office		May 1975 .
Rock Island, IL 61201		22
14. MONITORING AGENCY NAME & ADDRESS(11 dilleren	I from Controlling Office)	15. SECURITY CLASS. (of this report,
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRA
17. DISTRIBUTION STATEMENT (of the abetract entered	n Block 20, 11 dlfferent fro	m Report)
5		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and Toxicology Nitric A	cid	Ammonia
19. KEY WORDS (Continue on reverse side if necessary and Toxicology Nitric A Hazard Analysis Sulfuric	cid Acid	Ammonia Physiological Threat
19. KEY WORDS (Continue on reverse side if necessary and Toxicology Nitric A Hazard Analysis Sulfuric Hazard Distance Acetic A	cid Acid cid	Ammonia Physiological Threat Vapor Concentration
19. KEY WORDS (Continue on reverse side if necessary and Toxicology Nitric A Hazard Analysis Sulfuric	cid Acid	Ammonia Physiological Threat
 19. KEY WORDS (Continue on reverse side if necessary and Toxicology Nitric & Hazard Analysis Sulfuric 	cid Acid cid nhydride Identify by block number) tain parcels of clared excess.	Ammonia Physiological Threat Vapor Concentration Evaporation Rates land located adjacent to Attempts were made to pr

. . 2

....

TABLE OF CONTENTS


· .

	rage
INTRODUCTION	
APPROACH	5
METEOROLOGICAL	5
SPILL AREAS	6
EVAPORATION RATE	6
TOXICOLOGY	7
RESULTS	8
SUMMARY	9
REFERENCES	10
APPENDIX A. EVAPORATION RATE	11
APPENDIX B. TOXICOLOGICAL DATA	13
APPENDIX C. DOWNWIND EXCLUSION DISTANCES	17

3

1

Next page is blank.

INTRODUCTION

The Department of the Army (DA) and the General Services Administration (GSA) have recommended that certain parcels of land located adjacent to the new acid area at Volunteer Army Ammunition Plant be declared excess. Attempts were made to provide rationale for retention of this area based on the need for a safety buffer zone to protect the public from personal injury or damage to property in case of chemical mishap. This rationale was not accepted by DA since there is no formal policy in regard to buffer zones around areas containing bulk storage of common chemical compounds.

Consequently, the ARMCOM Safety Office requested that a study be performed from which buffer zone policy could be derived. This report describes the rationale and methodology used to establish hazard distances.

APPROACH

A survey was conducted to identify the chemical compounds stored in bulk quantities (5000 lbs or more) at the Army Ammunition Plants and Arsenals. The purpose was to establish pertinent details of their storage configuration that would have a bearing on the severity of potential hazards if an accident would occur.

Five major compounds were identified: Sulfuric Acid, Nitric Acid, Acetic Acid, Acetic Anhydride, and Ammonia. A consideration of the types of historical accidents led to the conclusion that the "worstcase" threat would occur if a storage tank would rupture and spill its contents onto the ground and into the atmosphere. Since regulations require that all bulk storage areas be surrounded by dikes, the volume of compound within the storage tanks is assumed to be contained in the area defined by the dikes once a spill occurs.

Once the chemical compounds are identified, the maximum downwind distance (hazard-distance) at which a human physiological threat exists can be calculated based on the concentration/time of exposure (dosage), the area of the resulting spill, the rate of evaporation of the hazardous compound from the spill puddle, the evaporation time (or time to decontamination), and the prevailing meteorological conditions. This analysis was performed using worst-case meteorological conditions.

METEOROLOGICAL FACTORS

Meteorological conditions prevailing during an incident in which chemical compounds are released have a major influence in determining the resulting concentration of the vapor cloud at any downwind distance. For large spills, the rate at which the liquid evaporates is a function of temperature and windspeed. Subsequent diffusion and the dilution of the vapor cloud formed by the evaporating liquid are governed by atmos-

pheric stability and windspeed.

Broad inferences on stability can be made according to the time of day: inversion at night, neutral around sunrise and sunset, and lapse during the major portion of the daylight period. These terms are defined by the difference between the temperature at 4 meters and at 1/2 meter above the ground ($\Delta T = T_{4m} - T_{0.5m}$, in °F). The ΔT values used for the calculations are: -2 for lapse, 0 for neutral, and +2 for inversion. This selection of discrete values of ΔT covers a wide range of atmospheric stabilities and can be considered generally to bracket a high percentage of the occurrences in nature.

The rate of evaporation is affected by windspeed, and the diffusion of the vapor cloud is affected by both windspeed and stability conditions. To determine the worst-case meteorological condition, a search was made over the expected range of these variables. Using the transport and diffusion model outlined in ORG 40^1 , it was determined that the worst-case condition occurred at the 2 mph windspeed with an inversion stability condition. For the remaining meteorological variable, temperature, 86° F was chosen as representative of the high extreme for night time (inversion) conditions.

SPILL AREAS

No historical data was available on the size (area) of spills that have occurred. A spill could result if a seal would fail at a connection or valve. Depending upon the period of time until the leak is discovered, the resulting puddle could vary from a few to several hundred square feet. If a large storage tank would rupture, the resulting puddle could cover several thousand square feet. In order to cover the expected area for most spills, calculations were made for each compound for puddle sizes of 200, 400, 600, 800, and 1,000 square feet.

EVAPORATION RATE

The method for calculating the evaporation rates for liquid compounds was taken from the Chemical Engineers' Handbook, 3rd Edition, Section 8 (General Theory of Diffusional Operations).

The procedure used for the calculations is outlined in Appendix A. Table 1 shows the molecular weights and volumes that entered into the calculations of the diffusivities and mass transfer coefficients:

Irving Solomon et al, ORG Report 40, Methods of Estimating Hazard Distances for Accidents Involving Chemical Agents, February 1970. CONFIDENTIAL.

TABLE 1. MOLECULAR WEIGHTS AND VOLUMES

Compound	Molecular Weight	Molecular Volume	Vapor Pressure
Sulfuric Acid	98.0	81.0	3.2
Nitric Acid	63.0	55.3	77.0
Acetic Acid	60.0	68.4	656.0
Acetic Anhydride	102.0	117.4	7,8
Ammonia	17.0	26.7	8770.0

Assuming a 2 mph windspeed and a temperature of 86°F, the evaporation rate for each compound is shown in Table 2 for varying puddle size.

Spill Area (Sq. Ft.) 200 400 600 1000 Compound 800 0.0766 0.143 0.206 0.267 0.326 Sulfuric Acid 1.358 2.535 3.652 4.73 5.78 Nitric Acid 10.5 19.6 28.3 36.6 44.7 Acetic Acid 0.748 0.176 0.328 0.472 0.612 Acetic Anhydride Armonia 60.66 113.3 163.2 211.4 258.3

TABLE 2. EVAPORATION RATES (LBS/MIN)

For the purposes of this analysis, it was assumed that the compounds evaporated in a pure state and did not break down or combine with other elements to form different compounds. No attempt was made to determine the amount of sulfur oxides or nitrogen oxides that could form and pose a threat in themselves.

TOXICOLOGY

Historically, buffer zones were usually established by first choosing the percentile of the population that is to be protected, then computing the corresponding dosage for that percentile from dose-response curves, and finally, determining the required distances by using appropriate transportation and diffusion models. However, there is little data available for human physiological response to common chemical compounds. In order to establish safe distances (i.e., required buffer zones), it is necessary to first select the hazard dosage, i.e., the effects-level, to be considered. Among the factors which pertain to the effective dosage, the most important are concentration of the materiel, duration of exposure, and sensitivity of human tissues and organs. Attempts to obtain dose/response data for the five compounds considered within this study proved unsuccessful. Contacts made with Edgewood Arsenal, AMC Surgeon General, Department of Transportation, Public Health Service, Environmental Protection Agency, and the National Research Council all indicated that little data is available for other than Threshold Limit Values (TLV) for the compounds.

The TLV represents conditions under which nearly all workers may be repeatedly exposed day after day without adverse effects. In very few instances have the values been firmly established on a basis of examination of human subjects correlated with adequate environmental observations. A list of TLV's is published annually by the American Conference of Governmental Industrial Hygienists. A listing of the TLV's and other documented responses and associated concentrations are shown in Appendix B.

Establishing buffer zones at distances where the TLV concentrations occur is considered unrealistic. It is impractical to require buffer zones to insure that a person could work in the resulting atmosphere eight hours a day, every day without adverse effects. An analysis of the available data indicates that concentration levels of 4 to 6 times the TLV levels can be tolerated without acute discomfort. Except for Acetic Acid and Ammonia, the limits contained in Table 3 are 4 times the TLV for each compound. For Ammonia and Acetic Acid, the values at which discomfort occurs were used. Limited exposure of 30 minutes or less to these concentrations, at worst, should cause eye and nasal irritation among the average population. These limits are believed sufficiently low so that exposure will not prevent self-rescue operations such as walking out of the area.

TABLE 3. CONCENTRATION LEVELS

Recommended Concentration	TLV
60 mg/m^3	24 mg/m^3
80 mg/m^3	20 mg/m^3
210 mg/m^3	35 mg/m^3
100 mg/m ³	25 mg/m^3
4 mg/m^3	l mg/m ³
	60 mg/m ³ 80 mg/m ³ 210 mg/m ³ 100 mg/m ³

RESULTS

Depending upon the area covered when a spill occurs, the distances

shown in Table 4 are the minimum distances required to insure that the civilian populace is not exposed to a higher concentration than those shown in Table 3. Downwind hazard distances for a variety of concentration levels, wind speeds, and meteorological conditions are shown in Appendix C.

TABLE 4. DOWNWIND EXCLUSION DISTANCE^a (Meters)

		Spil:	l Area (So	. Ft.)	
Compound	200	400	600	800	1000
Acetic Acid (Glacial)	890	1410	1800	2240	2660
Acetic Anhydride	30	50	65	80	90
Ammonia	1250	1960	. 2720	3350	3850
Nitric Acid	130	200	260	320	370
Sulfuric Acid	160	260	350	420	490

^aThese distances are based on worst-case conditions; i.e., 2 mph windspeed; 86°F; inversion.

SUMMARY

The quantity of physiological response data available for common chemical compounds is not adequate to determine the first element of input when establishing hazard distances; i.e., dosage levels. This data must be determined before accurate hazard distances can be established. However, in view of the impending decision at Volunteer AAP, buffer zones could be based upon concentrations that are believed to be within short exposure tolerances for the average populace. Once a concentration level is established, the downwind exclusion distance can be obtained from the appropriate table in Appendix C.

REFERENCES

1. Fassett, David W., <u>Industrial Hygiene and Toxicology</u>, Volume II, Interscience Publishers, New York, 1967.

2. Fairhall, Lawrence T., Industrial Toxicology, The Williams & Wilkins Company, Baltimore, 1949.

3. American Industrial Hygiene Association, <u>Hygienic Guide Series</u>, Detroit, Michigan.

4. Manufacturing Chemists Association, Inc., Chemical Safety Data-Sheet SD-5, SD-15, SD-20, SD-41, Washington, DC.

5. US Department of Health, Education, and Welfare, <u>The Toxic</u> Substances List, 1973 Edition.

6. Irving Solomon et al, ORG Report 40, <u>Methods of Estimating</u> <u>Hazard Distances for Accidents Involving Chemical Agents</u>, February 1970. CONFIDENTIAL.

7. <u>Hazards of Chemical Rockets and Propellants Handbook</u>, Volume III, CPIA/194, Chemical Propulsion Information Agency, Silver Spring, Maryland, May 1972.

APPENDIX A. EVAPORATION RATE

The method for calculating the evaporation rates for liquid compounds was taken from the Chemical Engineers' Handbook, 3rd Edition, Section 8 (General Theory of Diffusional Operations).

The procedure used for the calculations is as follows:

a. Determine the Reynolds number (dimensionless), $\mathrm{N}_{\mathrm{Re}},$ for the air flow from the equation

 $N_{Re} = Lv\rho/\mu$,

where

L = downwind leagth of the puddle, ft

v = wind speed, ft/min

 ρ = density of the air, lb/ft^3

 μ = viscosity of the air, lb/(ft-min)

b. From the Reynolds number, calculate the mass transfer factor, ${\bf j}_{\rm M},$ as follows:

 $j_{M} = 0.664 (N_{Re})^{-0.5}$ for $N_{Re} \le 20,000$ $j_{M} = 0.036 (N_{Re})^{-0.2}$ for $N_{Re} > 20,000$

c. Derive the mass transfer coefficient, which is defined by

$$\frac{k_{\rm G}}{G_{\rm M}} = j_{\rm M} \left(\frac{\mu}{\rho D}\right)^{-2/3},$$

where

 $k_{G} = mass transfer coefficient, lb moles/(min) (ft²)$ (mole fraction)G_M = molar mass velocity of air = vp/M_A, lb moles/(min)(ft²)M_A = molecular weight of air, lb/lb mole $<math display="block">\frac{\mu}{\rho D} = Schmidt number (dimensionless)$ D = diffusivity, ft²/min

The diffusivity of agent vapor in air may be computed from

$$D = 0.0003 \qquad \frac{T^{3/2}}{P(V_A^{1/3} + V_B^{1/3})^2} \qquad \left(\frac{1}{M_A} + \frac{1}{M_B}\right)^{1/2}$$

d. Compute the evaporation rate, E, from the relationship

$$E = \binom{k_G}{\binom{M_B}{M_A}} \binom{\frac{p_B}{P}}{\frac{p_B}{P}} = \frac{1b \text{ of agent}}{(\min) \text{ (square foot),}}$$

where

 $p_{\rm B}$ = vapor pressure of compound at liquid-air interface.

P = pressure corresponding to one atmosphere in units equivalent to p_B.

APPENDIX B. TOXICOLOGICAL DATA

Acetic Acid

"Atmosphere concentrations immediately hazardous to life: unknown for humans. The LC_{50} in mice is reported to be 5620 ppm for a one hour exposure. A 4 hour exposure to 16,000 ppm killed one of six rats." (Ref 3, Acetic Acid, Sept 1972).

 $TLV = 10 \text{ ppm} = 24.5 \text{ mg/m}^3$

No one will voluntarily remain in concentrations of 50 ppm (122.6 mg/m^3) . 25 ppm (61.3 mg/m^3) will cause extreme eye and nasal irritation in unacclimated humans. (Ref 3, Acetic Acid, para 3.11).

Acetic Anhydride

"Death occurs in 5 minutes among rats exposed to saturated vapor." (Ref 3, Acetic Anhydride, Jan 1971)

"Rats exposed for 4 hours to 2,000 ppm were all dead within 14 days while rats exposed for 4 hours to 1,000 ppm all survived the 14 day observation period." (Ref 3, Acetic Anhydride, Jan 1971)

"The effects of exposure were so marked that workmen could not endure an atmosphere of 800 ppm for longer than 3 minutes." (Ref 2, p. 203)

(LCLO = Lowest Published Lethal Concentration in Air) Rat - LCLO = 1,000 ppm for exposure less than 24 hours.

TLV = 5 ppm

Ammonia

"Exposed rabbits and cats to static atmospheres with initial concentrations on the order of 5,000 to 10,000 ppm ammonia, for 1 hour, and found this exposure to be approximately the LC₅₀." (Ref 1, p. 861)

Physiological Response to Ammonia '

(Ref 1, p. 862)

Response	Concentration (ppm)
Maximum concentration for prolonged exposure	100
Maximum amount for 1 hour	300-500
Least amount causing immediate irritation of eyes, nose, and throat	400-700
Dangerous for as little as 1/2 hour	2500-6500
Rapidly fatal for short exposures	5000-10,000

 $TLV = 50 \text{ ppm} = 35 \text{ mg/m}^3$

From Ref 4, SD-8, para 8-1.2

.6 to 1% by volume is lethal within few minutes .05 to .1% by volume is irritating to eyes, respiratory tract and throat .2% produces convulsive coughing and may be fatal within 1/2 hour 2% is maximum concentration tolerated by the skin for more than few seconds

From Ref 6, p. 3-2

					mg/m ³				
					mg/m ³				
60	min.	EEL	-	210	mg/m ³	-	300	PPM	

Nitric Acid (99%)

"Pulmonary edema may follow exposures for only 1/2 to 1 hour to higher concentrations (100-150 ppm). A few breaths of the gaseous oxides in a concentration of 200-700 ppm will cause severe pulmonary damage which may prove fatal within 5 to 8 hours." (Ref 4, SD-5, p. 15)

For white fuming: Rat - LC50 = 244 ppm (Ref 5, p. 656)

 $TLV = 10 \text{ ppm}/8 \text{ hr} = 25 \text{ mg/m}^3$

Sulfuric Acid

"The 2.5 μ droplets caused the greatest response in the higher levels of concentration and at 200 mg/m³ caused death within one hour to all 4 animals (guinea pigs) exposed to this concentration." (Ref 1, p. 896)

"Short Exposure Tolerance: 18 mg/m³ in the form of 1 μ diameter droplets killed 50% of exposed guinea pigs in eight hours, while more than 500 mg/m³ were required for mice." (Ref 3, Sulfuric Acid, 2nd printing, April 1964).

(LCLO = Lowest Published Lethal Concentration in Air) Rat - LCLO = 500 mg/m^3 for exposure less than 24 hours. Mouse - LCLO = 549 mg/m^3 for exposure of 3.5 hours. Guinea Pig - LCLO = 165 mg/m^3 for exposure of 0.25 hours. (Ref 5, p. 897)

 5 mg/m^3 is distinctly objectionable to humans and can be tolerated for 5 minutes maximum. (Ref 3)

 $TLV = 1. mg/m^3$

TABLE B-1. SUMMARY OF HUMAN TOXICOLOGY DATA

 $\sqrt{2}$

Lig V

AGENT	CONCENTRATION	EFFECT
Acetic Acid (Glacial)	24.5 mg/m ³ (10 PPM)	TLV
	61.3 mg/m ³ (25 PPM)	Unacclimated humans experience eye and nasal irritation
	122.6 mg/m ³ (50 PPM)	No one will voluntarily remain
Acetic Anhydride	20 mg/m ³ (5 PPM)	TLV
	3337.4 mg/m ³ (800 PPM)	Fatal in 3 minutes
Ammonia	35 mg/m ³ (50 PPM)	TLV
	210 mg/m ³ (300 PPM)	30-60 min. Emergency Evacuation Limit (EEL)
	350 mg/m ³ (500 PPM)	10 min. EEL
Nitric Acid	25 mg/m ³ (10 PPM)	TLV
	64.4 mg/m ³ (25 PPM)	Pulmonary signs and symptoms after an 8 hr. exposure
`	257.7-386.5 mg/m ³ (100-150 PPM)	Pulmonary edema after 1/2 to 1 hour exposure
Sulfuric Acid	1 mg/m ³	TLV
	5 mg/m^3	Distinctly objectionable (can be tolerated fo 5 min max)
		4
$F_{0} = F_{0} = -F_{0}$		(inter-
		2
		· · · · · · · · · · · · · · · · · · ·
Ê,		
	and the second	is a

APPENDIX C. DOWNWIND EXCLUSION DISTANCES

Downwind exclusion distances were calculated for these five common chemical compounds:

1. Glacial Acetic Acid (Table C-1)

2. Acetic Anhydride (Table C-2) '

3. Ammonia (Table C-3)

4. Nitric Acid (Table C-4)

5. Sulfuric Acid (Table C-5)

Calculations were made for all combinations of the following:

1. Temperature : 86°F (30°C)

2. Windspeed: 2, 5, 10, 15 m.p.h.

3. Weather Condition: inversion, neutral

4. Spill area: 200, 400, 600, 800, 1000 square feet

The chemicals were assumed to evaporate in a pure state.

	TAI	BLE C-1. DOWNWIN	D EXCLUSION DISTANC	ES (METE	RS) FOR	GLACIAL	ACETIC AC	ID				
-						MET	reorologic/	I. COMDITI	LONS			
_					INV	ERSION			NEU	JTRAL		
	WIND SPEED (M.P.H.)	PUDDLE SIZE (Sq. Ft.)	EVAPORATION RATE (Lb./Min.)		ENTRATION			CONCENT				
				120	_90_	_60	25_	120	90	60		
	2	1000 ·	45	1580	1950	2660	5100	630	750	940	1560	
	2	800	37	1330	1680	2240	4400	560	670	740	1370	
	2	600	28	1120	1380	1800	3550	490	560	710	1170	
	2	400	20	840	1000	1410	2690	400	470	550	990	
	2	200	11	530	640	890	1680	280	330	420	690	
	5	1000	93	1360	1680	2280	4470	570	660	840	1390	
	5	800	76	1140	1420	2000	3900	500	590	740	1660	
0	5	600	59	960	1190	1600	3160	440	520	640	1080	*.
	5	400	. 41	720	890	1250	2420	360	. 420	530	890	٠
	5	· 200	22	450	560	780	1490	250	300	370	620	
	\ 10	1000	162	1220	1520	2000	3980	520	620	790	1280	
	10	800	133	1060	1270	1780	3530	460	550	700	1140	
	10	600	102	860	1080	1410	2820	400	480	610	1000	
	10	400	71	650	800	1120	2160	330	390	500	800	
	10	200 ····	38	410	500	700	1340	230	270	350	· 570	
	15	1000	224	1240	1490	2020	3980	520	620	790	1210	
	15	800	183	1000	1240	1680	3170	450	530	670	1100	
	15	600	142	800	1000	1390	2660	390	460	560	960	
	15	400	98	610	760	1010	2000	320	370	460	790	
	15	, 200	53	380	470	630	1260	220	260	330	550	
		·										

ž., 10

.8

. .

.

-		INDLE C-2. DOWN	WIND EXCLOSION DIS				TEOROLOGIC		LONS			
					INV	ERSION			NEUT	RAL		
	WIND SPEED (M.P.H.)	PUDDLE SIZE (Sq. Ft.)	EVAPORATION RATE (Lb./Min.)	CONCEN 200	TRATION	LEVEL	(Mg/M ³) 20	CONCENT	RATION L 120	evel (14 <u>80</u>	4g/11 ³) 20	
	2.	1000	0.75	45	65	90	260	40	55	70	160	
	2	800	0.61	40	55	80	230	35	50	65	140	
	2 -	- 600	0.47	30	45	65	190	30	45	55	125	
	2	400	0.33	25	35	50	140 .	25	35	45	105	
	2	200	0.18	15	25	30	90	20	25	35	70	
	5	1000	1.56	35	55	80	230	35	50	65	145	
	5	800	1.27	30	50	65	200	30	45	55	130	* p
19	5	600	0.98	25	40	55	170	25	35	50	110	•
	5	400	0.68	20	30	45	125	20	30	40	90	
	5	200	0.37	15	20	25	80	15	20	30	65	
	10	1000	2.71	35	50	70	210	30	45	- 55	130	
	10 -	800 · ·	2.22	30	45	60	180	30	40	50	. 125	
	10	600	1.71	25	35	50	140	. 25	35	45	100	
	10	400	1.19	20	30	40	110	20	30	35	90	•
	10	200	0.64	12	20	25	70	15	20	25	60	
	15	1000	3.75	30	45	65	200	30	45	55	125	
•	15	800	3.07	25	40	55	165	25	40	50	115	
*	15	600	2.37	20	35	50	140	25	35	45	100	
0	15	400	1.64	20	25	35	105	20	30	35	· 80	
1	15	200	0.88	10	15	20	65	15	20	25	55	
				l		•		ł.,				
1										10 C		7

TABLE C-2. DOWNWIND EXCLUSION DISTANCES (METERS) FOR ACETIC ANDYDRIDE

13

1.5

	IADLE	C-J. DOWNWIND IN				TEOROLOGIC	AL CONDI	TIONS			
and the state	A	F 4		IN	VERSION			NEU	TRAL		
WIND SPEED	PUDDLE	EVAPORATION RATE		ENTRATIO				TRATION			
(M.P.H.)	(Sq. Ft.)	(Lb./Min.)	350	210	150	35	350	210	150	35.	
2	1000	258	2600	3850	5000	15200	890	1260	1580	3550	
2	800	211	.2240	3350	4200	12500	790	1120	1250	3160	
2	600	163	1770	2720	3550	10600	700	975	1120	2700	
2	400	113	1410	1960	2660	7950	560	800	950	2240	
2	200	61	900	1250	1590	5010	400	570	630	1590	
5	1000	538	2240	3210	4230	12590	840	1120	1380	3160	3
5	800 ·	440	2020	2830	3560	11220	750	1000	1250	2820	
5	600	340	1580	2380	3060	9200	640	870	1100	2500	
5	400	• 236	1230	1780	2230	7080	510	710	880	1900	, 'n
5	200	126	760	1120	1420	4430	360	500	620	1410	•
10	1000	. 936	2000	3060	3970	11800	780	1040	1260	2820	
. 10	800	766	1780	2600	3360	1000	700	930	1120	2510	•
10	600	591	1420	2170	2820	8000	600	780	1000	2240	
10	400	410	1120	1610	2100	6300	480	650	790	1780	
10	200	220	700	1000	1310	3980	340	470	560	1260	
15	1000 .	1295	2000	2820	3550	11220	720	1000	1220	2780	
15	800	1059	1570	2350	3160	9600	660	890	1080	2480	
. 15	. 600	818	1350	1990	2500	7940	570	750	920	2110	
15	400	568	1000	1520	2000	5650	460	630	760	1720	
15	200	304	630	950	1260	3550	320	440	510	1200	
							1				

TABLE C-3. DOWNWIND HAZARD DISTANCES (METERS) FOR AMMONIA

4.1

WIND SPEED PUDDLE SIZE (M.P.H.) EVAPORATION SIZE SIZE (Sq. Ft.) EVAPORATION RATE (Lb./Min.) CONCENTRATION 150 LEVEL (Mg/M ³) CONCENTRATION: 160 EVAPORATION: 20 2 1000 5.78 270 370 500 1100 85 225 150 100 85 2 800 4.73 220 320 450 900 150 190 250 2 600 3.65 200 260 370 770 130 160 210 290 2 400 2.54 150 200 280 580 100 130 170 2 200 1.36 90 130 170 360 70 90 130 5 1000 12.03 240 320 450 990 150 190 220 5 600 7.60 170 230 320 660 120 150 190 5 200 2.83			IOUS	AL CONDIT	TRIC ACID		(METERS)	STANCES	WNWIND EXCLUSION DI	TABLE C-4. DO	
SPEED (M.P.H.) SIZE (Sq. Ft.) RATE (Lb./Min.) CONCENTRATION LEVEL (Mg/M ³) CONCENTRATION LEVEL (Mg/M ³) 2 1000 5.78 270 370 500 1100 85 2 800 4.73 220 320 450 900 150 190 250 2 600 3.65 200 260 370 770 130 160 210 200 2 400 2.54 150 200 280 580 100 130 170 2 200 1.36 90 130 170 360 70 90 130 5 1000 12.03 240 320 450 990 150 190 250 5 800 9.85 200 280 390 810 140 170 220 5 400 5.28 130 170 240 500 90 120 150 5		TRAL					INV			DUDDED	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	85	100						RATE	SIZE	SPEED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	290	210	160			370	270	5.78	1000 -	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	440	250	190	150	900	450	320	220	4.73	800	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	370	210	160	130	770	. 370	260	200	-3.65	600	· 2-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	310	170	130	100	580	280	200	150	2.54	400	. 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210	130	90	70	360	170	130	90 ·	1.36	200	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	440	250	190	150	990	450	320	240	12.03	1000	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	390	220	170	140	810	390	280	200	9.85	800	5
5 200 2.83 80 110 150 320 60 80 100 10 1000 20.95 210 280 400 840 140 180 220 10 800 17.14 180 250 360 720 120 150 200 10 600 13.23 150 200 280 600 110 130 180 10 400 9.19 110 150 220 450 80 110 140 10 200 4.92 70 90 14D 280 60 80 100 15 1000 28.98 200 270 390 790 130 170 210 15 600 18.30 140 190 260 560 100 130 170 15 400 12.71 100 140 200 430 80 100 140<	340	190	150	120	660	320	230	170	7.60	600	5
10 100 20.95 210 280 400 840 140 180 220 10 800 17.14 180 250 360 720 120 150 200 10 600 13.23 150 200 280 600 110 130 180 10 400 9.19 110 150 220 450 80 110 140 10 200 4.92 70 90 14D 280 60 80 100 15 1000 28.98 200 270 390 790 130 170 210 15 800 23.70 170 230 330 700 110 150 190 15 600 18.30 140 190 260 560 100 130 170 15 400 12.71 100 140 200 430 80 100	270	. 150	120	90 "	500 .	240	170	130	. 5.28	400	5
10 800 17.14 180 250 360 720 120 150 200 10 600 13.23 150 200 280 600 110 130 180 10 400 9.19 110 150 220 450 80 110 140 10 200 4.92 70 90 14D 280 60 80 100 15 1000 28.98 200 270 390 790 130 170 210 15 800 23.70 170 230 330 700 110 150 190 15 600 18.30 140 190 260 560 100 130 170 15 400 12.71 100 140 200 430 80 100 140	190	100	80	60	320	150	110	80	2.83	200	5
10 600 13.23 150 200 280 600 110 130 180 10 400 9.19 110 150 220 450 80 110 140 10 200 4.92 70 90 14D 280 60 80 100 15 1000 28.98 200 270 390 790 130 170 210 15 800 23.70 170 230 330 700 110 150 190 15 600 18.30 140 190 260 560 100 130 170 15 400 12.71 100 140 200 430 80 100 140	400	220	180	140	840	400	280	210	20.95	1000	10
104009.1911015020045080110140102004.92709014D280608010015100028.982002703907901301702101580023.701702303307001101501901560018.301401902605601001301701540012.7110014020043080100140	360	200	150	120	720	360	250	180	17.14	800	10
102004.92709014D280608010015100028.982002703907901301702101580023.701702303307001101501901560018.301401902605601001301701540012.7110014020043080100140	310	180	130	11.0	600	280	200	150	13.23	600	10
15 1000 28.98 200 270 390 790 130 170 210 15 800 23.70 170 230 330 700 110 150 190 15 600 18.30 140 190 260 560 100 130 170 15 400 12.71 100 140 200 430 80 100 140	250	140	110	80	450	220	150	110	9.19	400	10
1580023.701702303307001101501901560018.301401902605601001301701540012.7110014020043080100140	180	100	80	60	280	14D	90	70	4.92	200	10
1560018.301401902605601001301701540012.7110014020043080100140	390	210	170	130	790	390	270	200	28.98	1000	15
15 400 12.71 100 140 200 430 80 100 140	320	190	150	110	700	330	230	170	23.70	800	15
	280	170	130	100	560	260	190	140	18.30	600	15
	230	140	100	80 :	430	200	140	100	12.71	400	15
15 200 6.80 60 90 130 260 60 70 100	160	100	70	60	260	130	90	60	6.80	200	15

Χ.,

R	E	TABLE C-5, DOI	WNWIND EXCLUSION DIS	STANCES (I	METERS)								
3	63.				METEOROLOGICAL CONDITIONS INVERSION NEUTRAL								
	WIND SPEED (M.P.H.)	PUDDLE SIZE (Sq. Ft.)	EVAPORATION RATE (Lb./Min.)	CONCENTRATION LEVEL (Mg/M ³) 5 4 3 1				CONCENTRATION LEVEL (Mg/M ³) 5 4 3 1					
	2 ,	1000 -	0.33	410	490	620	1400	230	260	310	590		
	2	800	0.27	360	420	510	1130	200	230	280	530		
•	. 2.	600	0.21	290	350	440	1000	180	200	240	450		
	2	400	0.14	220	260	330	710	140	160	200	360		
	2	200	0.08	140	160	210	460	100	110	130	25D		
٠	5	1000	0.68	360	430	530	1210	210	230	280	530		
	5	800	0.56	310	360	450	1060	180	210	240	470	· 5	
22	5	600	0.43	250	350	380	870	160	180	220	410		
	5	400	. 0.30	190	230	280	640	130	. 150	170	330	ø	
ŧ	5	200	0.16	110	141	180	320	90	100	120	230		
	. 10	1000	1.18	320	380	480	1050	190 [·]	210	250	490		
I.	- 10	. 800 -	0.97	270	330	410	950	170	200	230	440		
	10	600	0.75	230	270	340	730	150	160	200	380		
	10	400	0.52	170	200	250	590	120	130	160	280		
4	10	200	Q.28	110	130	160	370	75	90	110	220		
	. 15	1000	1.64	290	360	450	1040	180	210	240	460		
	. 15	800	1.34	260	330	380	890	160	190	220	420		
	15	600	1.03	210	250	320	740	140	160	180	360		
	15	400	0.72	160	190	240	530	110	130	150	280		
1	15	, 200	0.38	100	120	150	· 340	80	. 90	110	200		
1		~											

E A A

.

i

۶.,